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Noether identities resulting from external symmetries represent "conservation" 
laws in relativistic field theories and balance laws in 3-dimensional continuum 
statics, respectively. In a suitably selected 4-dimensional non-Euclidean space- 
time (3-dimensional stress space), the momentum currents (stresses) entering 
the conservation (balance) laws can be mapped such that the Noether identities 
become Bianchi identities, or irreducible pieces thereof. Using a metric-affine 
space with independent  metric g ~  and connection F~, we derive the following 
types of  mapping prescriptions: momentum current ~ (contraction of) curvature; 
spin current ~ torsion; shear current ~ trace-free nonmetricity; dilation current 
Weyl 1-form. The last two mappings constitute the main result. The mapping of 
the dilation current turns out to be exceptional, since it does not yield a nontrivial 
Bianchi identity. 

1. I N T R O D U C T I O N  

I n  g e n e r a l  r e l a t i v i t y  t h e o r y  w e  h a v e  t h e  e n e r g y - m o m e n t u m  l a w  5 

/)o-~ = 0  (1)  
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with tr~ as (the 3-form of the symmetric) energy-momentum current and/~ 
as the covariant exterior derivative corresponding to the Riemannian con- 
nection. This law is known to represent a Noether identity 6 resulting from 
the invariance of the matter Lagrangian under diffeomorphisms of the 
underlying Riemannian spacetime. 

The energy-momentum current tr~ is the source in Einstein's field 
equation (Kopczyfiski, 1987; Mielke, 1987; Thirring, 1986; Trautman, 1973, 
1984; Wallner, 1982): 

~ ^ n ~  = K~o (2) 

w h e r e / ~  is the Riemann curvature 2-form, r/,,~v = *(O~ ^ O 8 ^ Or), and K 
is the gravitational constant. For / ~ r  the Bianchi identity /~/~er=0 is 
known to hold and, in particular, its contraction 

t S ( ~  ^ n~o)--- o (3) 

Equation (3) represents a geometrical identity which is valid in any Rieman- 
nian spacetime. 

If we substitute the Einstein equation (2) into the identity (3), then we 
find the energy-momentum law (1). Accordingly, provided the field equation 
(2) is fulfilled, the energy-momentum law is always an automatic by-product 
of the Bianchi identity. In this sense we have mapped the Noether identity 
(1), via the field equation (2), into the contracted Bianchi identity (3). 

We have shown (Hehl and McCrea, 1986) that this idea of an automatic 
"conservation" of energy-momentum can be extended to the angular 
momentum law if we turn to the Einstein-Cartan-Sciama-Kibble theory of 
gravity (ECT) with its Riemann-Cartan spacetime. In the present article 
we prove that this concept can be still further generalized to the (trace-free 
part of the) so-called hypermomentum law (Hehl et al., 1989), if we extend 
the geometry of spacetime to a metric-attine one and use a modified Hilbert- 
Einstein type of gravitational Lagrangian. 

The intuitive idea of the last-mentioned extension of the "automatic 
conservation" of currents emerged during a recent lecture of Kr6ner (1990) 
in which the field theory of crystal dislocations (Kr6ner, 1981) within the 
realm of 3-dimensional continuum statics was enriched by the new concept 
of continuously distributed point stacking faults. Whereas from the point 
of view of continuum statics, dislocations yield (2-forms of) spin moment 
stress r ~  = - ~ ' ~  (intrinsic double stress with moment (KrSner, 1963a, b; 
Hehl and Kr6ner, 1965), the point stacking faults are expected to induce, 
in the 3-dimensional body under consideration, (2-forms of) intrinsic double 

6Since (1) is valid only provided the material Euler-Lagrange equations have been satisfied, 
we should, strictly speaking, use the terminology "weak identity" or "'identity on shell." 
However, we shall refer to it simply as an identity. 
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stress without moment ,  ( A ~  + A~)/2--= A(~).  Therefore, on the stress side, 
we find, within the f ramework of the field theory of lattice defects, (force) 
stress E~ and intrinsic hyperstress A ~  = r ~  + A ~ )  with 

In the absence of  body forces and intrinsic body double forces, the 
linearized equilibrium conditions for such a continuum with microstructure 
read in Cartesian coordinates v [see Mindlin (1964): put E = ~'Mi,d+CrMind, 
O" = "/ 'Mind ~ A = ] .LMind ] 

a ~  : o  (4) 

d A ~  + O~ ^ Et~ - cr,~ = 0 (5) 

where o-~ = o-t3 ~ := O4 ^ o't3 represents the symmetric Cauchy stress. Clearly, 
for vanishing hyperstress, we recover the equilibrium conditions dcr~ = 0 
and OE~ ^ o't31 = 0 of  classical continuum statics. 

For the classical continuum, Cartan (1922, 1986) and Schaefer (1953) 
introduced a 3-dimensional Riemannian stress space with curvature / ~ .  
They showed that, by the identification prescription o-~ = (1 /2K) /~  t~y ̂  ~7~y~, 
where K is a constant with the dimension (force) -~, the equilibrium 
conditions are automatically satisfied by virtue of  the Bianchi identity. In 
the cont inuum theory of  dislocations it is necessary to include additionally 
spin moment  stress r,~t3. Amari  (1981), KriSner (1963a, b), Minagawa (1962), 
and Stojanovic (1963) have pointed out that under  those circumstances one 
must resort to a R iemann-Car t an  stress space with torsion (compare Cartan 
1922, 1986). I f  T"  denotes its torsion 2-form, they found that the 
identifications 

1 
Y"~ = 2 K  R ~  A ~7~ (6) 

1 
~'~ -- 2 K  T~ ^ r / ~  (7)  

(Hehl and McCrea,  1986, Table IV) translate the equilibrium condition (4) 
and the antisymmetric part of (5) into the 2nd and 1st Bianchi identities, 

DR ~ =- 0 (8) 

and 

D T  ~ - 0  ~ ^ Rt~=--O (9) 

respectively. 8 

7From reference Kr6ner (1987) it is clear that the mapping procedures formulated below also 
should be valid if full nonlinearity is admitted as well as arbitrary coordinates. 

Sin 3 dimensions, the Bianchi identities need not be contracted for that purpose. 



1188 McCrea et al. 

If, in addition to spin moment stress, we now introduce intrinsic 
hyperstress without moment A(~) and the corresponding equilibrium condi- 
tion, namely the symmetric part of (5), the next step is not too far-fetched. 
In a Riemann-Cartan space the nonmetricity 1-form 

Q ~  := - D g ~  (10) 

vanishes, where g,~ denotes the components of the metric g with respect 
to an arbitrary frame. If  we allow for nonmetricity, 9 thereby widening the 
Riemann-Cartan space to a metric-affine space with arbitrary metric g and 
arbitrary connection 1-form F~, then the zeroth Bianchi identity reads 
(Schouten, 1954; Hehl et al., 1989) 

Accordingly, the ansatz 

DQ~I3 =- 2R(,~) (11) 

1 
A(-13) ~ ~-~- Qr(~ ^ */re) (12) 

should be a likely candidate for the mapping into the symmetric part of (5). 
Apart from a factor, equation (12) seems to be the only possibility, 

since A(~t3 ) is an ( n -  1)-form, Q ~  a 1-form, and ~/~ an ( n - 2 ) - f o r m ,  if n 
is the dimension of the space. However, the trace of the right-hand side of 
(12) vanishes. In other words, equation (12) involves only the trace-free 
part of A(,,~). Therefore, equation (12) should rather read 

N ~  := A(~r g~r Q,(~ A rl~) (13) 

We shall see below in detail that this is indeed the correct ansatz. 
This means that our mapping procedures (6), (7), l~ together with (13), 

only take care of the equilibrium conditions (4) and the trace-free part of 
(5), whereas the trace, and only the trace, of (5), i.e., 

dAW+ 0~' A E~, 7 -  - o'~,- 0 (14) 

is left without geometrical image. A remedy for that could be an identification 
(Hehi et al., 1981) of the type 

~' K *QW (15) 

linking the trace a := h.~ of the intrinsic hyperstress with the Weyl 1-form 

9The idea of introducing nonmetricity in continuum physics was suggested by G/.inther and 
Zorawski and by KrOner (Giinther and Zorawski, 1985, and Zorawski and Gi.inther, unpub- 
lished; KriSner, 1981). 

~~ (7) picks up a Q,~-dependent piece in an (L,,, g); see Section 5, (M2). 
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Q:= (1 /n)Q~.  We will find out below, however, that this does not lead to 
the desired geometrical image. 

Up to now we have used heuristic arguments. In the following, however, 
we present a mathematical ly consistent f ramework for a toy model of  a 
gravitational gauge theory with a modified Hilbert-Einstein-type Lagrangian 
in a metric-affine space. In Sections 2 and 3 we deal with a general n- 
dimensional space. In subsequent sections, although much of  what we do 
is applicable to n dimensions, we explicitly derive the results for 4- 
dimensional spacetime and the analogous results for the 3-dimensional 
space of  classical cont inuum mechanics are simply exhibited. 

In Section 2, we look into the Bianchi identities for an n-dimensional 
metric-affine space (L, ,  g) and into their projective invariance. The Noether  
identities of  a matter field minimally coupled to the (L, ,  g) will be spelled 
out in Section 3. In Section 4 we present in tabular form the results that 
we intend to derive in the following sections. It was felt that by placing the 
summary  of  our results before their actual derivation, our motivation would 
become more transparent.  In Section 5 we write down the Lagrangian, 
which we use as a tool for getting hold of the mapping prescriptions, and 
derive the corresponding field equations. It is these field equations that will 
provide the required mappings between the Noether  and Bianchi identities. 
As one would expect f rom Hehl and McCrea (1986), the mappings will 
involve relations between irreducible pieces of  Noether  and irreducible pieces 
of Bianchi. Since the Noether  identities are n-forms in an n-dimensional 
space, their irreducible decomposit ion is a trivial matter. This is not so for 
Bianchi and Section 6 is devoted to the derivation of the irreducible parts 
of  the 0th, 1st, and 2nd Bianchi identities in a metric-affine space. The 
way is then clear for the derivation of the Noether-Bianchi  mappings in 
Section 7. Finally, in Section 8, we summarize our results. 

2. B I A N C H I  I D E N T I T I E S  IN A METRIC-AFFINE SPACE (Ln,g)  
AND T H E  V OLUM E-P R ES ER VING C O N N E C T I O N  

The basic variables, that is, the potentials, of  a metric-affine space 
(L, ,  g) are the metric g = g~t~O ~ | 0 8, the 1-form basis O ~, and the connec- 
tion 1-form Fff ~. Gauge-theoretically, the metric g is a subsidiary tensor 
field for the onset of  the group reduction from the GL(n, R)  down to the 

o r t h  

SO( l ,  n - 1). Picking an orthonormal  basis O ~ would allow us to transform 
the metric coefficients g~r to their (constant) Minkowskian values o~t~ = 
d iag( -1 ,  1 , . . . ,  1) at each point. However, we will not introduce such a 
restrictive gauge yet. Rather, we treat the g~r as formally independent 
variables. 
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The field strengths 
metricity 1-form 

the torsion 2-form 

and the curvature 2-form 

McCrea et al. 

corresponding to these potentials are the non- 

Q ~  := - D g , ~  (16) 

T ~ : = D O  ~ (17) 

R f : =  d F f + F r O A F ~  r (18) 

By exterior differentiation we find the zeroth, first, and second Bianchi 
identities, 

DQ~,r -= 2R(~r (19) 

D T  '~ =- 0 ~ A Rt3 ~ (20) 

DR~=--O (21) 

Let A f  be a GL(n ,  R )  tensor-valued 1-form. Then, by the deformation 

'F ~ = F~ ~ -  A f  (22) 

the old connection F f  i s  carried over into a new connection 'F~ r Since 
the Bianchi identities (19)-(21) are valid for any connection, they can also 
be formulated in terms of  the dashed connection, u 

Motivated by our ansatz (13), we expect a connection *F~ ~ with vanish- 
ing Weyl 1-form to enter in an essential way into our considerations. This 
volume-preserving connection (Hehl et al., 1981, 1988) results from a specific 
deformation of F f  with ZXo~a ]3 ---1/").~I/3 -- 2,~t.,ct , namely 

*F~:  = F ~ _ ! ~  (23) 

where the Weyl  1-form is defined according to (Schouten, 1954) 

Q:=lg~ t~Q~t  3 1 2 v 1 
n =n Q~=nF~-n g~ d g ~  (24) 

It has the property that 

*D*l~v~ = 0 (25) 

where ~7~Ta = ea / e~ A e~ / e~ _17/ are the components of  the volume 4-form 
77 (the generalization to n dimensions is obvious), and hence 

dldet g ~ [ -  T~ldet g~l  = 0 (26) 

Ulf A= ~ is chosen to be the non-Riemannian part of the connection F~ r then T~ t~ = f'~~ is 
the Levi-Civita connection and the Bianchi identities boil down to those of a Riemannian 
space. 
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For th e Weyl 1-form of  *Ffl we find indeed 

,Q  : :  1 g~*Q4t~ = 1 g ' ~ * D g ~  = 0 (27) 
n n 

since * Dg,~t3 = Dg4t~ + Qg,~t3. 
Using (23) and the definitions (16)-(18), we find straightforwardly 

* O ~  = O~t3 - Og~ (28) 

*T ~ = T ~ - � 8 9  O ~ (29) 

* R J  3 = R f l - �89  dQ 6~ (30) 

Clearly, (27) is a special case of (28). As already mentioned, the Bianchi 
identities keep their respective shapes, 

*D *T ~ =- O ~ A tRy4 

tD  *Rfl--= 0 

(31) 

(32) 

(33) 

3. NOETHER IDENTITIES FOR A MINIMALLY COUPLED 
MATTER FIELD IN AN (L., g) 

Starting from a special-relativistic first-order Lagrangian, the matter 
field has now to be immersed in the (Ln, g) geometry by minimal coupling 
in order to end up with a GL(n, R)-invariant Lagrangian: 

LSR(o~,, ~ ,  d~F)-> L(g4~, 04, ~F, D ~ )  (34) 

The coframe O ~ no longer needs to be orthonormal,  i.e., the metric g ~  and 
the coframe 0 4, besides the connection F~ ~ and the matter field ~ ( x ) ,  are 
regarded as formally independent variables. 

If we vary the Lagrangian n-form with respect to the potentials, we 
find the following matter currents: 

6L OL 
cr 4' := 2 = 2 - -  metric stress-energy (35) 

6g,~ 0g4~ 

6L OL 
Y~4 := - canonical energy-momentum (36) 

6O 4 00 ~ 

6L OL 
A4~ := 8Ff l  = P(L'~')~ ^ 0(D~F) hypermomentum (37) 

Here p(L4t~) are infinitesimal operators of the Lie algebra of GL(n, R)  
associated with 'It. 
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The hypermomentum current A~ can be decomposed into its irreducible 
pieces comprising the spin, the dilation, and the shear currents: 

1 
A,~ = r~r + n  g ~ A  + 2 / ~  (38) 

The shear current g ~  := A(~ ) - (1 /n )g~ r  which is symmetric and trace- 
free, and the dilation current A := A, v both lead beyond the Poincar6 gauge 
theory (PGT) and its (metric-compatible) Riemann-Cartan spacetime. Not 
surprisingly, the dilation current, an (n - 1)-form, couples to the Weyl 1-form 
in accordance with (37): 12 

~SL 2 cSL 
A:= t~F~ n ~Q (39) 

The material Lagrangian n-form L is scalar-valued. Hence, it should be 
invariant under diffeomorphisms of spacetime and under local GL(n, R) 
transformations. Provided the matter field equation 

t~L 
- -  = 0 ( 4 0 )  

is fulfilled, we find the first Noether identity 

DY,,~=(e~_ITr162189162 (41) 

and the second Noether identity 

D A ~  + O ~ A E~ -- g~cr ~ = 0 (42) 

which are differential identities for energy-momentum and hypermomen- 
turn, respectively. Observe that (42) does not depend on the Abelian part 
of  the connection, i.e., the Weyl 1-form Q. We apply (23) and find 

* D A ~  + O 5 A Z~ -- O'~ = 0 (43) 

We can project out the trace of (42) or (43), 

v = 0 (44) d A + O ~ A s  

for the dilation current A. Then the trace-free part is left over 

- n  tS~O" A Ev r 8~trr = 0  (45) 

~2This shows that the Weyl 1-form has nothing to do with the electromagnetic potential, as 
once surmised by Weyl, but rather with the well-established dilation current of canonical 
field theory. Incidentally, the variation in (39) with respect to Q is executed such that g.r 
O ~, and *F~ ~ are kept constant. 
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for the trace-flee intrinsic hypermomentum current 

- 1 . ~ ( 4 6 )  A~ := A~r - n  6 ~ A  

We lower the index a in (45) and find 

(47) 

Now it is trivial to decompose (47) into its symmetric trace-free and its 
antisymmetric pieces. Since ~ r  = ~ ~r + ~'~, we have 

+ ^ ~  1 5 ; )  ( c r~  - l g ~ r ~ )  = 0 

(48) 

and 

tD,r~/3 4- tQ~[,~ A z ~ ]  + -0[~ A ~ ]  = 0 (49) 

Accordingly, (44) represents the law for the dilation current and (48) that 
for the shear current, whereas (49) is the general version of the angular 
momentum law. 

It was a big surprise to us that the Mindlin-type equilibrium condition 
(5) for continua with microstructure, which has a very transparent physical 
interpretation in 3-dimensional continuum mechanics, has this nice Noether 
analogue (42) in 4 or in arbitrary n dimensions. This is one of the reasons 
which convinces us that there is a future for metric-affine geometry in 
continuum physics as well as in extended theories of gravitation. Another 
reason is, of  course, the Kr6ner argument (Kr6ner, 1990) of the relation of  
a distribution of point stacking faults to the nonmetricity of a "continuized" 
crystal. 

4. COUNTING THE NOETHER AND BIANCHI IDENTITIES AND 
PREVIEW OF THE RESULTS 

The task to be carried out is now obvious. We want to map the Noether 
identities (41), (42) into the Bianchi identities (19)-(21). Let us first of all 
repeat the results for the case of a Riemann-Cartan spacetime (Hehl and 
McCrea, 1986). These are summarized in Tables I and II and the sense in 
which Bianchi and Noether  are mapped to one another is as explained in 
Section 1 and in Hehl and McCrea (1986). 
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Table I. Noethers  and Bianchis in Four-dimensional  R iemann-  
Cartan Spacetime" 

2nd Noether  6 ~ ~ 1st Bianchi 

1st Noether  4 ~ ~ 2nd Bianchi 
4 # J  

Here the Noether  identities are irreducible under  the action of 
the Lorentz group $0(3, 1). On the other hand,  the Bianchi 
identities (8) and (9) can be further decomposed into irreducible 
pieces with dimensionali ty as shown. We see how nicely and 
almost  uniquely these two mappings  work; compare equations 
(6) and (7). Since the piece marked With # does not survive in 
3 dimensions,  it does not seem to be a likely candidate for the 
mapping  of  the Noether  identities in 4 dimensions  either. 

5. THE MAPPING PRESCRIPTIONS 

In Section 1 we have seen that the mappings in the Riemann-Cartan 
space are just represented by the field equations of the ECT, the Lagrangian 
of which is (1/2K)R~ ~ ̂  ~ " .  This suggests that we should take the analogous 
Lagrangian with action 

w =  ~ n~ ~ ̂  n~ (50) 

for the metric-affine space and vary it with respect to the appropriate 
potentials (g~,  ~ ,  F f ) .  The cosmological term At/ and, in 4 dimensions, 
the parity-violating term R ~  ^ ~9~^ ~9 ~, as well as the related boundary 

Table II. Noethers  and Bianchis in Three-Dimensional  
R iemann-Car tan  Stress Space" 

2nd Noether  3 ~ ~ 3 1st Bianchi 

1st Noether  3 c ~ 3 2nd Bianchi 

~ln 3 dimensions,  both Noether  and Bianchi identities are 
irreducible under  SO(3). Although the table seems to allow 
for the possibility of  a mapping  between 1st Noether  and 1st 
Bianchi and similarly for the 2nd ones, this is, in fact, not 
possible with one constant  of  proportionality, due to the 
physical d imensions  of  the quantities involved, d im(s t ress)=  
force/ length 2, d im(moment  stress) = force/length,  dim(tor- 
sion) = I / length ,  dim(curvature) = 1/tength 2. 
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term d(O~ ^ T~),  will be omitted here; see, however Hehl and McCrea 
(1986) and Mielke et al. (1989). 

We need to be cautious. The action is invariant under projective transfor- 
t 

mations of the connection 

F ~t3 ~ F , ~ - a 6 ~ (51) 

where A is a scalar-valued 1-form. Then the curvature transforms as follows 
[see (28)]: 

R f - >  R f -  dA 6~ (52) 

Because of */~t3 = - r l ~  in (50), the additional piece from (52) drops out. 
As a consequence, the field equations to be derived from (50) cannot control 
the trace F~ of the connection. This is why we introduced the volume- 
preserving connection in (23), which uniquely defines the class of all 
connections obtainable from it by projective transformations of the type 
(51). The Einstein-Hilbert-type action is then 

*W=~12K tRy/3 A r/t3~ = ~ Rj3A "r//3 a = W (53) 

In order to have field equations which will determine also the trace of the 
connection we shall have to modify (53) in such a way that projective 
invariance no longer holds. To achieve this, we add the seemingly simplest 
term necessary, namely one that is quadratic in the Weyl 1-form: 

L o : = 2 ~  Q ^ * Q (54) 

The dimensionless constant f here will enable us to trace back the terms 
which arise because of this additional term in the Lagrangian. 

Denoting the material Lagrangian by L, we vary the action 

I ( - ~ T R , f ^ ~ j ~ + L o + L )  (55) 

with respect to the potentials (g~ ,  O ~, F~) and find 

2Ko -~t~ = - 2  *R(~ ^ ~7~)v+ g ~t~ *R ~8 ^ ~ 

- f { g ~ r  (M0) 

2Ks = *R ~ ^ n ~  +/{(e~ A Q) *Q + Q ^ (e~ l *Q)} (M1) 

2K A,~ = * T ~' n ~7~t~, + * Q,~, ^ ~ ~'t3 - fg~t3 *Q (M2) 

The right-hand sides of these three equations, for the special case o f f =  0, 
are projectively invariant and we have made this manifest by writing them 
in terms of the volume-preserving connection of (23); see also (28)-(30). 
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For Q ~ - - 0  and A ( ~ = 0 ,  (M1) and (M2) reduce to (6) and (7), 
respectively, since in a Riemann-Cartan space *F. ' =  F~ ' .  In the general 
case (Q~, # 0), the trace-free symmetric part of (M2) coincides with (13 ) -  
and this is the novel core formula relating the shear current ~ of (13) to 
the trace-free nonmetricity tQ~:  

1 ,  
~ -2-Kr Qv(~ A ~)T (56) 

Incidentally, for f = O ,  the prescriptions (M0)-(M2) map the canonical 
currents, which are Hodge dual to 1-forms, via the right dual ~ . . .  ~~ into 
the field strengths appropriately amended by wedge products with the 
coframe. 

For future use we shall need the traces of the mapping prescriptions. 
A short calculation yields 

Ko'~ = *R ~ A ~ - f ( 2 d  *Q+ Q A *Q) (57) 

KO ~ A E~ = *R ~ A ~ - f Q  A *Q (58) 

KA w = - 2 f * Q  (59) 

One can see at a glance that these three equations satisfy the dilation 
identity (14), 

~' Y y _  dA~,+O A ~'~V - -  O'V - -  0 (60) 

as they should. An arbitrary dilation current is only allowed if f # 0 .  
Therefore the supplementary Lagrangian (54) is required in order not to 
constrain the hypermomentum current in (M2) a priori. 

6. THE IRREDUCIBLE DECOMPOSITIONS OF THE 
BIANCHI IDENTITIES 

The description of how the Noether identities are mapped to the Bianchi 
identities via the field equations (M0)-(M2) will be greatly facilitated by a 
knowledge of the irreducible parts of the 0th, 1st, and 2nd Bianchi identities. 

6.1. Decomposition of the Zeroth Bianchi Identity 

The 0th Bianchi identity is given by 

B~ ~ 0 (61) 

with 

B ~  = D Q ~  - 2 R ( ~  (62) 

This is a symmetric tensor-valued 2-form and in 4-dimensional metric-affine 
spacetime it may be decomposed into a sum of irreducible pieces as follows. 
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Let 

and 

Ft.=et3_lB,~t3, ~7~ =*(B~ A Or B=Bv:' (63) 

=~+~e~A(~7~,^O ~) (64) 

Note that ~ and q~ satisfy 

e,~_.ldp ~ =0, qb ^ d e =0 (65) 

e~_lW~ =0, W~^O~=0  (66) 

The irreducible decomposition may then be written as (compare Table III) 

B~t~ = (1)B,~t3 + (2)B,~t~ + (3)B,~/3 + (4)B,~t3 + (5)B,~3 
(67) 

6 0 = 9 + 6 + 6 + 9 + 3 0  

Table I lL Noethers and Bianchis in Four-Dimensional  Metric-Affine 
Spacetime a 

2nd Noether  

1st Noether  4 

< . . . .  

, 

{ 

\ 

30 ) 

i} 
4 

16 
4 

16 
4#  
4 

16 

0th Bianchi (60) 

1st Bianchi (16) 

2nd Bianchi (64) 

"The 2nd Noether identity for hypermomentum is given in (42). It splits into 
3 pieces, its trace (44), its trace-free symmetric part (48), and its antisym- 
metric part (49). The 1st Noether  identity is given in (41) and it represents 
the m o m e n t u m  law. The Bianchi identities are to be found in (19)-(21). 
The arrows represent the mappings  derived in Section 7. The first arrow for 
2nd Noether  (9) corresponds to (116), the second one for 2nd Noether (6) 
to (118) with (120) and (123), and the last one for 1st Noether  to (124) with 
(125) and (126). The parentheses around the two 6-dimensional subspaces 
in the 0th Bianchi indicate the noncanonical  character of  this splitting. The 
pieces marked with # do not survive in 3 dimensions  and are therefore 
uninterest ing from a physical point of  view. The trace (44) of  the 2nd 
Noether  identity has no Bianchi image, except for a mapping to d d Q  = O. 
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where 
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(l)B. r = _1 *{O(. A ~r 

(:)n.~ =~ *[o(. ^ {e~)J(--. ^ o")}] 

(3)Ua/3 = - ~ O ( a  A [et~)/(~Q g A O~) ]  1 + ~g,~B 

(4)Ba/~ = �89 ^ qbfl) 

(5)B~ = B ~  - (1)8o~/3 - (2)8ct/3 - (3)B~ - (4)B~ 

(68) 

(69) 

(70) 

(71) 

(72) 

The invariant subspaces ( 1 ) B ,  ( 4 ) B ,  and (5)B are canonical, whereas the sum 
of the two isomorphic subspaces (2)B and (3)B may be split into two invariant 
subspaces in an infinite number of ways, of which (69), (70) represent one 
possibility. This is perhaps more transparent in terms of the tensor com- 
ponents B.0v~ of Br~ given by 

B~,8 = �89 '~ A 0 8 (73) 

Let 

Then 

F ~  = Bvt.~l ~ and H.~ = B~v ~ (74) 

where 

and 

(:)By8 = �89 (2)B.~v~O" ^ 0 ~ a n d  (3)Br,s = 1  (3)B,~/3~,,sO,~ ̂  Or (75) 

(2) l B,~,8 =~(-4gt,~(~/Fs)~?+2g~,~F,~ -2gt,~(~,H~)~l+g~,~H.~) (76) 

(3)Bar}3, 8 -~- l(-4gE.(vF~)~l - gr~H.~) (77) 

Thus, although, from the point of view of the tensor components, a splitting 
into the two 6-dimensional, isomorphic invariant subspaces represented by 
F.~ and H.~ would seem to be most natural, combinations of the type (76) 
and (77) are equally valid as invariant subspaces under the Lorentz group 
SO(l ,  3). 

For future reference we note that, in terms of tensor components, the 
1-form qb that occurs in (4)B~ is given by 

dp. = B.(.~)~O ~ (78) 

B.(.~) ~ is trace-free as well as symmetric, as is also evident from (65). 
In 3 dimensions ~-~ is a 0-form and 

~ . = E . - e . A ( E ~ O ~ ) = 0  
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H e n c e  (1)B=/3 drops out  and  we find the decompos i t ion  (see also Table IV) 

B,,t3 = (2)B,~t3 + (3)B~,t3 + (4)B=/3 + (S)B,,t~ 
(79) 

1 8 = 3 + 3 + 5 + 7  

where  

(3)B.t  3 = -1 "0 (~  ^ [e~)_J(O. ^ O~)]+~g,~t3B 
(4)Bar 3 -- 20 (~  A (I)f~) 

(5)B.r = B.r - (2)B.~ - (3)B./3 - (4)B,~13 

6.2. Decomposition of the First Bianehi Identity 

Let 

B '~ = D T "  - R ~ "  ^ 0 8 

so that the 1st Bianchi identity is 

B,~__-0 

(8O) 

(81) 

(82) 

(83) 

(84) 

(85) 

Table IV. Noethers and Bianchis in Three-Dimensional Metric-Affine 
Stress Space ~ 

2nd Noether 

1st Noether 3 

, ( )  

3 

1 

0th Bianchi (18) 

1st Bianchi (3) 

2nd Bianchi (9) 

aThis table is applicable to 3-dimensional continuum statics where 1st 
Noether represents the balance of  force and 2nd Noether the balance 
of  hyperforce with and without moment. The decomposition of 0th 
Bianchi can be found in (79), 1st Bianchi is irreducible, and for 2nd 
Bianchi compare the last paragraph of Section 6. Here we propose the 
new mapping between the trace-free symmetric part of  2nd Noether 
(5 components) and an irreducible piece of 0th Bianchi. This is basi- 
cally achieved by means of  our new key formula (56): 2 / ~  = 
(1/2K) ~ Q~(~ ^ r/~)L Thereby the intrinsic shear hyperstress ~ ,~ is related 
to the trace-free part of the nonmetricity Qz,8 of  the stress space. The 
trace of the 2nd Noether identity has no Bianchi image, except for a 
mapping to ddQ = O. 
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B '~ is a vec tor -va lued  3- form and,  for  a 4-d imensional  spacet ime,  its 
i r reducible  decompos i t i on  is given by (see Hehl  and  McCrea ,  1986) 

B ,~ = (1)B ,~ + (2)B'~ + (3)B'= 

with 

1 6 = 9 + 6 + 1  
(86) 

(1)B'~ = B '~ - (2)B'~ - (3)B"~ (88) 

In  terms of  tensor  c o m p o n e n t s  B '~8, where  B '~ = B'~8~78, (l)B'~t3 is the 
t race-free  symmetr ic ,  (2)B'~8 the ant isymmetr ic ,  and  (3)B'~8 the t race part .  
In  3 d imens ions ,  a vec tor -va lued  3-form is obvious ly  i r reducible  as it stands.  

6.3. Decomposition of the Second Bianchi Identity 

The lef t -hand side o f  the 2nd Bianchi  ident i ty 

B "~8 = 0 (89) 

where  

B~ 8 = D R ~  (90) 

is a 2nd-order ,  t ensor -va lued  3-form. As a first step in deriving its i r reducible  
decompos i t ion ,  we split  it into its an t i symmet r ic  and  symmet r ic  parts ,  

with 

B,C# 3 = A,~8 + S ~'t3, 

64 = 24 + 40 

The  i r reducible  pieces of  A ~8 
M c C r e a  (1986): 

A~,8 = B"t'#3], S,~8 = B.(,~8) 
(91) 

have a l ready been  derived in Hehl  and  

A~8 = (1)A,~8 + (2)A'~8 + (3)A~8 

2 4 =  1 6 + 4 + 4  

(2)A~8 =2yt~.q81,  Y'~ = *(A ~8 A 08) 

(3)A'~8 = ~ W ^  O'~^.O 8, W = e ,  Ae~_IA ~" 

(1)A~fl = A a8 _ (2)A~8 _ (3)A~fl 

Note  the proper t ies  

(A ~8 - (2)A~ A 08 = 0 

e,~ I e~ A ( A  '~8 - (3)A~8) = 0 

(~)A~8 A Or3 = 0, e~de8d~l)A'#3=O 

(92) 

(93) 

(94) 

(95) 

(96) 

(97) 

(98) 

and  

(2)B"~=�89 A O~, (3)B'~=~ *(B'~ A 08)71 ~ (87) 
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To find the irreducible pieces of  the symmetric part  S ~t~, we proceed 
as follows: Let 

P'~ = e ~ A S  '~t3 ( ~ e ~  AP~ =0)  (99) 

and let 

Then 

V '~t~ =~P("  A O ~), Z "~ = S ~t3 - V "t3 (lOO) 

e e A Z  "~ = 0  (101) 

Z "~ and V "r are the irreducible parts of  S ee under G L ( 4 ,  R ) .  I f  S ~r are 
the components  of  S "t~ in accordance with S ~ =  S"r it follows from 
(100) and (101) that the corresponding components  of Z ~ are the com- 
pletely symmetric S ("t3r). To get the irreducible pieces under the Lorentz 
group, we take out the traces of  Z ~ and V ~ .  For Z "t3 this yields 

Z ~ = (1)S~/3 + (2)S~r 

20 = 16+4 

where, defining Z := Z~ and Z "  := Z A 0 ~, 

(2) S ~ = i Z g  ~ - ~( e (~ J Z ")) 

and 

( l ) s a ~  _~. Z ~  __ (2)Sail  

The term (1)S~t'(3 has the trace-flee properties 

(1)S.~ A d e =0 ,  (a)S~ = 0  

For V ~r we get 

20=  16+4 

where, if V =  PVA Ov and V" = V^ O", 

(4)Sa/3 2 = ~{ Vg.~ + (e(~ J V~))}. 

and 

Note that 

(3)SOt/3 _.~ VoL/3 _ (4)SOq3 

(102) 

(lO3) 

(104) 

(105) 

(106) 

(lO7) 

(10S) 

(3)Sa/3 A O 'G = 0  a n d  (3)S~ = 0  (109) 
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To sum up, the left-hand side of the 2nd Bianchi identity in a 4- 
d imensional  metric-affine spacetime may be written in terms of  its seven 
irreducible parts as follows: 

B, ,~  = (~)A~ + (2)A~/3 + (3)A~ + (1)See/3 + (2)SCt/3 + (3)Sa~ + (4)SCefl 
(110)  

64= 1 6 + 4 + 4 +  1 6 + 4 +  16+4 

Here (")A ~ ( n = 1 , 2 , 3 )  are defined by (93)-(95), while (m)S~ 
(m = 1 , . . . ,  4) are as given by (103), (104), (107), and (108). 

In three dimensions, the irreducible decomposition of  the (2nd-order) 
tensor-valued 3-forms consists simply of  the trace, the trace-free symmetric, 
and the antisymmetric parts (see Table IV). 

7. THE N O E T H E R - B I A N C H I  MAPPINGS 

The right-hand sides of  (M0)-(M2) are the variational derivatives 

-2(SV/Sg,~), -(8V/80~), -g~(av/(sr~) 
respectively of  

1 
V := - -  R~ ~ ^ 7/~ a + L o 

2K 

Hence, when (M0)-(M2) are substituted into the different irreducible pieces 
of the Noether  identities (41) and (42), they yield true, and not simply 
"weak" or "on-shell," identities, namely the Noether identities for V. To 
investigate the correspondence between these Noether  identities and the 
Bianchi identities, we make the substitutions 

DQ,~--> B ~  + 2R(~) ,  DT~ ~ B'~ + R ~  ^ O B, DRf f  --> B~ ~ 
(111) 

in the explicit expressions for the irreducible parts of the Noether identities 
for Vthat  we have obtained. When we have done this, we find that everything 
cancels out except for terms involving irreducible parts of the B ~ ,  B '~, and 
B " ~ ,  i.e., of  the three Bianchi identities. It is in this sense that we can map 
the different irreducible pieces of Noether into corresponding irreducible 
pieces of Bianchi. 

Let us begin with the trace-free symmetric part of2nd Noether, which, 
according to (48), may be written for 4-dimensional spacetime in the form 

D AI ~ + Q~(,~ ̂  A ~ ) +  Ol,~ ̂  Z~)-lg~/30~' ^ Z.y - (tr~ -�88 = 0 
(112) 

where A ~  is the shear current defined by (13), while 

- -  A a  I R a A ' Y  _ _  A~ = ~  ~--~,,~,.,~-- A ~  + z ~  (113) 
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By substituting (M0)-(M2) into (112) and using (111), we find that we are 
left with 

B ~  ^ ~ = 0 (114) 

where B~t3 is the left-hand side of the 0th Bianchi identity as in (62). By 
noting that 

B ~  ^ -q~)= B~(~t3)'r / (115) 

and comparing with (78) and (71), we see that (M0)-(M2) maps the 
trace-free symmetric part of 2nd Noether into the irreducible piece 

(4)Bat~ = 0 (116) 

of the 0th Bianchi identity, in the sense that we have explained above. The 
correspondence between the two 9-pieces of Table III has therefore been 
established. 

The trace part of 2nd Noether (44) has only one component. It is not 
possible to map it to a suitable Bianchi identity by means of our mapping 
relations, except for the trivial mapping to d d Q  = O. 

We now turn to the a n t i s y m m e t r i c  par t  o f  the 2nd  N o e t h e r  identity (49), 
which reads 

D~'~ + Q~[~ ̂  A ~ l +  O[~ A E~] = 0 (117) 

Substitution of (M1) and (M2) into (117) together with the substitutions 
(111) yields 

B '~ A ~a/3T"{- C~,[o~ A 7~ 3'/3] = 0 (118) 

with 

C,~  = B,~t~ 2g,~B~, (119) 

For the first term on the left-hand side of (118) we have 

B 'v A rl,~t3~, = ( e~ , JB  '~') ^ ~7~ (120) 

and therefore, by (87)~, this term corresponds to the irreducible part (2)B'= 
of the 1st Bianchi identity. Hence, in the U4 limit, the second term on the 
left-hand side of (118) drops out and we recover the map: antisymmetric 
2nd Noether (6)~-~the irreducible piece (6) C2)B'~ of the 1st Bianchi identity. 
However, here in the metric-affine case, we have an additional term C~[~ A 
r/~] which in terms of frame components may be written 

Cvt~ ^ r/~] = -(�89 ~ + B~[~t~]~) rJ (121) 

Going back ot 7~ defined in (63), it is a straightforward matter to verify that 

- ~  A 0 s' = -( �89 B,~t~ ~" + B~,E,~t3 ]~') n '~ (122) 
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and hence, by using (69), that 

(2)B~ = 0<=> Cvt ~ A ~7~1 = 0 (123) 

Thus, the additional term Crt~ ^ r / ~ l  in (122) corresponds to the 6- 
dimensional irreducible piece (2)B~ of  the 0th Bianchi identity. 

Finally, if we substitute (M0)-(M2) into the 1st N o e t h e r  identity (41) 
and use (111), we obtain 

�89 ^ "q~,~. - f (  e~ _J B ) ^ * Q = 0  (124) 

where B " ~  is as in (90) and 

- -  ~ / n _ ! ~  _ ! ~  ~ q ~  O/3 B - , , , r  2~-3,--2z,  a/33, ~, ^ (125) 

Since 

B " t ~  ^ rl~,~ = - ( e v ~  e~ I B "~'~) ^ rh~ = W ^  rh~ (126) 

it is clear from (94) that this term corresponds to the irreducible piece (3)A"13 

of the 2nd Bianchi identity. Furthermore, B of (125) corresponds to the 
trace of  the 0th Bianchi identity, i.e., the 6-dimensional irreducible piece 
of  the latter as defined in (74)2. Thus, we see that, if Q = 0, the 1st Noether 
identity is mapped into the 4-dimensional irreducible piece (3)A,~13 o f  the 
2nd Bianchi identity, just as in the U4 case of  Hehl and McCrea (1986). 
However, for Q # 0 ,  we have an additional term corresponding to an 
irreducible part of  0th Bianchi. 

8. CONCLUSION 

What is the net result of our work? In relativistic f ie ld  theory we have 
shown that the Lagrangian,(55) mediates between the material momentum 
and hypermomentum currents and the geometrical objects of  a metric-affine 
spacetime in a reasonable and intuitively pleasing way. In particular, the 
Noether-Bianchi  mappings give additional insight into the inner working 
of  such theories. In con t inuum mechanics  we have established that the stress 
space can be enriched by a trace-free nonmetricity which corresponds to 
the shear hyperstress as is, for instance, induced by point stacking faults 
in "continuized" crystals. 

In both domains of  application we recognized the rather special role 
played by the Weyl 1-form Q and the dilation current (hyperstress) A. In 
the Bianchi identities Q drops out altogether, as was shown in (31)-(33). 
The same is true for the 2nd Noether identity (45). The A only features in 
the trace part of  the 2nd Noether identity (46), it drops out in the trace-free 
piece (47). This is due to the direct product structure of the linear group. 13 

13GL(n, R)= (SL(n, R ) | 1 7 4  +. 
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It is then small wonder that we were unable to find a nontrivial Noether-  
Bianchi mapping for A. 

From a physical point of view, we do not take the Lagrangian (55) too 
seriously, since it encompasses presumably unphysical contact interactions. 
We hope, however, that we were able to show that the concept of  non- 
metricity Q ~  := -Dg~, as unintuitive as it may appear at first, can make 
perfectly good sense in field theory and continuum mechanics. 
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